In addition it demonstrates how to enable system debug output. You need the debug version of the Nut/OS libraries. To create them, you must enable the RTOS Kernel - OS Debug option in the Configurator. Then use the Build Menu in the Configurator to generate the build tree again and build Nut/OS.
Note, that the debug version consumes much more memory than the original version. If in doubt, check the map file.
#include <cfg/os.h> #ifdef NUTDEBUG #include <sys/osdebug.h> #endif #include <stdio.h> #include <io.h> #include <cfg/arch.h> #include <dev/board.h> #include <sys/thread.h> #include <sys/timer.h> #include <sys/event.h> #include <sys/heap.h> /* * Timer callback routine. * * This function is called by the system timer thread. It is executed * at a very high priority and must return as soon as possible and must * not call any potentially blocking function. * * To keep this example as simple as possible, we break the above rule * and call print functions. However, this is not really a problem, * because the UART output queue won't overflow on our few characters * and return immediately after starting transmit interrupts, which are * running in the background. */ void TimerCallback(HANDLE timer, void *arg) { NutEventPostAsync(arg); } THREAD(TimerEvent1, arg) { printf(" I1"); NutThreadSetPriority(4); for (;;) { if (NutEventWait(arg, 12500)) printf(" T1"); else printf(" E1"); } } THREAD(TimerEvent2, arg) { printf(" I2"); NutThreadSetPriority(8); for (;;) { if (NutEventWait(arg, 12500)) printf(" T2"); else printf(" E2"); } } THREAD(TimerEvent3, arg) { printf(" I3"); NutThreadSetPriority(16); for (;;) { if (NutEventWait(arg, 12500)) printf(" T3"); else printf(" E3"); } } THREAD(TimerEvent4, arg) { printf(" I4"); NutThreadSetPriority(32); for (;;) { if (NutEventWait(arg, 12500)) printf(" T4"); else printf(" E4"); } } THREAD(Sleeper1, arg) { NutThreadSetPriority(128); for (;;) { if (NutHeapAvailable() > 500) printf("\n%u free ", (u_int)NutHeapAvailable()); else puts("Memory low"); NutSleep(500); } } THREAD(Sleeper2, arg) { NutThreadSetPriority(129); for (;;) { NutSleep(500); printf(" S2"); } } THREAD(Sleeper3, arg) { NutThreadSetPriority(130); for (;;) { NutSleep(500); printf(" S3"); } } THREAD(Sleeper4, arg) { NutThreadSetPriority(131); for (;;) { NutSleep(500); printf(" S4"); } } /* * Main application routine. * */ int main(void) { int seq; u_long baud = 115200; u_long sleep_ms = 2000; u_long timer_ms = 125; u_long cpu_crystal; int one_shot; HANDLE timer1, timer2, timer3, timer4; HANDLE event1 = 0, event2 = 0, event3 = 0, event4 = 0; /* * Register the UART device, open it, assign stdout to it and set * the baudrate. */ NutRegisterDevice(&DEV_DEBUG, 0, 0); freopen(DEV_DEBUG_NAME, "w", stdout); _ioctl(_fileno(stdout), UART_SETSPEED, &baud); #ifdef NUTDEBUG NutTraceHeap(stdout, 1); NutTraceOs(stdout, 1); #endif NutThreadSetPriority(8); /* * The timer functions automatically determine the * CPU speed during system initialization. Query that * value and print it on the console. */ cpu_crystal = NutGetCpuClock(); puts("\n*******************************************************************************"); printf("Timer sample running on %u.%04u MHz CPU\n", (int) (cpu_crystal / 1000000UL), (int) ((cpu_crystal - (cpu_crystal / 1000000UL) * 1000000UL) / 100) ); NutThreadCreate("tmr1", TimerEvent1, &event1, 512); NutThreadCreate("tmr2", TimerEvent2, &event2, 512); NutThreadCreate("tmr3", TimerEvent3, &event3, 512); NutThreadCreate("tmr4", TimerEvent4, &event4, 512); NutThreadCreate("slpr1", Sleeper1, 0, 512); NutThreadCreate("slpr2", Sleeper2, 0, 512); NutThreadCreate("slpr3", Sleeper3, 0, 512); NutThreadCreate("slpr4", Sleeper4, 0, 512); /* * Endless application loop. */ for (seq = 0;; seq++) { /* * Predefine the one-shot option flag for the * timer started below. Each odd sequence starts * a one-shot timer, each even sequence a * priodical one. */ if (seq & 1) one_shot = TM_ONESHOT; else one_shot = 0; /* * Start a timer with 1 second timer intervals. * This timer will call TimerCallback exactly one * time, if it's a one-shot timer or periodically, * if not a one-shot timer. * * We pass a pointer to the sequence counter, * which in turn is passed to the callback * function. */ //if((timer_ms += 125) > 500) // timer_ms = 0; printf("\nStart %s t1 ", one_shot ? "oneshot" : "periodic"); timer1 = NutTimerStart(timer_ms, TimerCallback, &event1, one_shot); printf("\nStart %s t2 ", one_shot ? "oneshot" : "periodic"); timer2 = NutTimerStart(timer_ms, TimerCallback, &event2, one_shot); printf("\nStart %s t3 ", one_shot ? "oneshot" : "periodic"); timer3 = NutTimerStart(timer_ms, TimerCallback, &event3, one_shot); printf("\nStart %s t4 ", one_shot ? "oneshot" : "periodic"); timer4 = NutTimerStart(timer_ms, TimerCallback, &event4, one_shot); /* * Sleep for a number of seconds. */ if ((sleep_ms += 1000) > 30000) sleep_ms = 1000; printf("\nSleeping %u seconds ", (int) (sleep_ms / 1000UL)); NutSleep(sleep_ms); /* * Stop periodical timer. One-shot timers * are automatically stopped by Nut/OS. */ if (one_shot == 0) { printf("\nStop timers "); NutTimerStop(timer1); NutTimerStop(timer2); NutTimerStop(timer3); NutTimerStop(timer4); } //printf("\nSleeping %u seconds ", (int)(sleep_ms / 1000UL)); //NutSleep(sleep_ms); printf("\n%u bytes free\n", (u_int)NutHeapAvailable()); } }